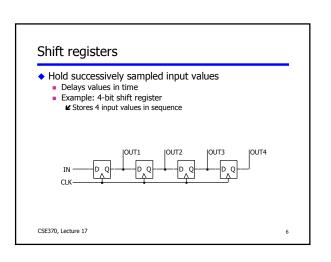
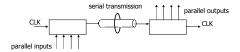
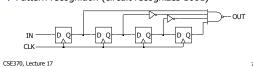
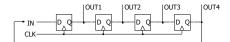

Overview Last lecture Review of D latches and flip-flops T flip-flops and SR latches State diagrams Asynchronous inputs Today Cascading flip-flops Clock skew Registers


CSE370, Lecture 17

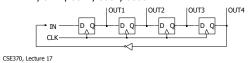




◆ Parallel-to-serial conversion for signal transmission

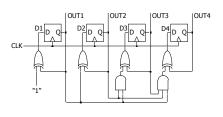


• Pattern recognition (circuit recognizes 1001)



Counters

• Ring counter: Sequence is 1000, 0100, 0010, 0001 Assuming one of these patterns is the starting state



◆ Johnson counter: Sequence is 1000, 1100, 1110, 1111, 0111, 0011, 0001, 0000

Class example: A binary counter

- ◆ Has logic between flip-flops
 - Draw a timing diagram

CSE370, Lecture 17

Summary: Sequential-logic building blocks

- Know latches and flip-flops
 - R-S latch
 - D latch and D flip-flop
 - Master/slave flip-flops
 - T flip-flop
- Know clocks, timing, timing diagrams
 - Flip-flop timing and delay specifications
- Understand asynchronous inputs
 - Metastability and how to avoid it
- Know basic registers
 - Storage registers, shift registers, counters

CSE370, Lecture 17

10